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INTRODUCTION TO BAYESIAN STATE ESTIMATION

The state of a system is a variable, which fully character-

izes the status of the system at a given time. Knowledge

of the state is, thus, essential for control or prediction of

the system’s future behavior. Unfortunately, the state of

the system is typically not directly measurable, i.e., it is

not known. Instead, the state is indirectly observed via

measurement only which is somehow related to the state.

The measurements are, moreover, affected by the noise.

State estimation of stochastic dynamic systems deals

with the estimation of the time-varying state from noisy

measurements. State estimation has been a subject of con-

siderable research interest for more than five decades.1

Although its development was motivated by the needs of

tracking and navigation applications, state estimation

these days plays an indispensable role also in many other

technical and nontechnical fields such as automatic

control, speech and image processing, biology, economy,

weather forecasting, etc., [1], [2].

The goal of this article is to introduce selected meth-

ods of the state estimation, which are used in navigation

applications. In particular, the article is focused on naviga-

tion applications, which belong into the area of expertise

of the IEEE AESS Navigation Systems Panel2 (NSP), of

which the authors are members.

The article is organized as follows. In the rest of this

section, state-space modeling and Bayesian state estima-

tion are briefly reviewed. In the sections “State Estimation

Methods: An Overview” and “State Estimation Methods:

Additional Topics,” an overview of state estimation meth-

ods, related terminology, and algorithms is given with

stress on topics relevant to NSP technologies. Selected

state-of-the-art applications falling within the scope of the

NSP are then described and discussed with emphasis on

sensor error sources in “Estimation in Navigation Sys-

tems.” Finally, concluding remarks are given.

SYSTEM STATE-SPACE MODEL

State estimation methods provide the state estimate on the

basis of the availablemeasurements and a known state-space

model. In this article, the following discrete-time nonlinear

stochastic dynamic state-space model with additive noises

xkþ1 ¼ fkðxk;ukÞ þwk (1)

zk ¼ hkðxkÞ þ vk (2)

is considered, where the vector xk 2 Rnx represents the

unknown state of the system at time instant k, the vectors

uk 2 Rnu and zk 2 Rnz represent the known input and

measurement at time instant k, the functions fk : R
nx�

Rnu ! Rnx and hk : R
nx ! Rnz are known state and
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1State estimation is a part of a general estimation theory of which
development can be dated back to the beginning of 19th century.
The development started with a design of the least-squares method
by C. F. Gauss and A.-M. Legendre and it was motivated by
modeling planetary motion [1].

2The NSP webpage is http://ieee-aess.org/tech-ops/navigation-sys-
tems-panel
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measurement nonlinear vector transformations, and the

vectors wk, vk represent unknown state and measurement

noises with known descriptions in the form of the proba-

bility density functions (PDFs) pðwkÞ, pðvkÞ, respectively.
The initial state PDF pðx0Þ is known and independent

of the noises. The state equation (1) models time behavior

of the state and the measurement equation (2) gives a rela-

tion between the sought state and available measurement.

In navigation applications, the system may refer to a

navigated vehicle, the state xk to sought vehicle naviga-

tion information (i.e., vehicle position, velocity, attitude,

and heading), the input uk to, e.g., the readings of an iner-

tial measurement unit (IMU), and the measurement zk,

e.g., to the readings of a global navigation satellite system

(GNSS) receiver. Then, the nonlinear function fkð�Þ in (1)

stems from dynamic or kinematic laws, hkð�Þ in (2) mod-

els a relation between the receiver output and state varia-

bles, and the state and measurement noise PDFs pðwkÞ,
pðvkÞ are determined by the noise properties of the IMU

and GNSS receiver [3], [4].

STATE ESTIMATION AND BAYESIAN RECURSIVE

RELATIONS

The goal of state estimation, or more precisely filtering, is

to find an estimate of the state xk on the basis of a

sequence of all measurements zk ¼ ½z0; z1; . . . ; zk� up to

the time instant k and the model (1), (2). In particular, in

the Bayesian formulation of state estimation, the goal is to

find the PDF of the state xk conditioned on the measure-

ments zk, i.e., the estimate in the form of the conditional

PDF pðxkjzkÞ; 8k, is sought. The conditional PDF provides

a full description of the state estimate.

In the Bayesian framework, the general solution for

state estimation is given by the Bayesian recursive relations

(BRRs) for the computation of the conditional PDFs,3 [5]

pðxkjzkÞ ¼ pðxkjzk�1ÞpðzkjxkÞ
pðzkjzk�1Þ (3)

pðxkþ1jzkÞ ¼
Z

pðxkþ1jxkÞpðxkjzkÞdxk (4)

where pðxkjzkÞ is the filtering PDF computed by Bayes’

rule (3) and pðxkjzk�1Þ is the one-step predictive PDF

computed by the Chapman–Kolmogorov equation (4).

The PDFs pðxkþ1jxkÞ and pðzkjxkÞ are the state transition

PDF and measurement PDF unequivocally obtained from

the model (1) and (2), respectively. The PDF

pðzkjzk�1Þ ¼
Z

pðxkjzk�1ÞpðzkjxkÞdxk (5)

is the one-step predictive PDF of the measurement. The

Bayesian recursion (3), (4) starts from the system’s initial

condition pðx0jz�1Þ ¼ pðx0Þ. The Bayesian recursion is

illustrated in Figure 1.

STATE ESTIMATION METHODS: AN OVERVIEW

The BRRs are complex functional relations about which

exact solution is possible for a limited set of models only.

In other cases, an approximate solution to the BRRs must

be employed. These approximate methods can be divided,

Figure 1.
Illustration of the Bayesian recursion.

Credit: Image licensed by Ingram Publishing

3Considering the model (1), (2), the BRRs (3), (4) should be condi-
tioned also on available sequence of the input uk;8k. However, for
the sake of notational simplicity, the input signal is assumed to be
implicitly part of the condition and it is not explicitly stated, i.e.,
pðxkþ1jxkÞ ¼ pðxkþ1jxk;ukÞ, pðxkjzkÞ ¼ pðxkjzk;uk�1Þ, and
pðxkþ1jzkÞ ¼ pðxkþ1jzk;ukÞ.
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with respect to validity of the estimates, into local and

global methods [6]–[8].

EXACT METHODS

The exact methods have been typically designed for a set of

the linear models. For this set, the solution to the BRRs

results in reproducible conditional PDFs, i.e., the condi-

tional PDFs at subsequent time instants share the same distri-

bution and, thus, recursive conditional PDF computation

reduces to recursive computation of conditional PDF param-

eters only. The exact methods are represented, e.g., by the

Kalman filter (KF) or the Gaussian sum filter (GSF) [5],

[94]. The KF, developed in the sixties, is an optimal4 estima-

tor for the linear Gaussian models, i.e., for the linear model

(1), (2) with the state noise, measurement noise, and the ini-

tial condition described by Gaussian PDFs. The recursive

solution to the functional BRRs then collapses to the recur-

sive computation of the conditional mean and covariance

matrices only, which fully describe the Gaussian conditional

PDFs. The GSF is an optimal estimator for the linear Gauss-

ian sum models and can be imagined as a bank of concur-

rently running KFs [94]. Consequently, the conditional

PDFs are in the form of Gaussian sums and the solution of

the BRRs, then, lies in computation of the weights, means,

and covariancematrices of the particular terms of the Gauss-

ian sum conditional PDF.

LOCAL METHODS

Local methods are based on two approximations; first, the

joint conditional predictive state and measurement PDF is

assumed to be Gaussian; second, the nonlinear functions in

(1) and (2) are linearized. The former approximation results

in a linear structure of a local filter (LF) with respect to the

measurement, and, together with the latter approximation,

it allows use of the (linear) KF design technique also for

nonlinear models. All LFs, therefore, share the same algo-

rithm structure, but they differ in which linearization of the

nonlinear functions in (1) and (2) is used. In particular, two

different types of linearization can be found in the litera-

ture: derivative-based and derivative-free.

The derivative-based LFs, developed in the seventies,

approximate the nonlinear function by the Taylor expansion

(TE). Whereas utilization of the first-order TE leads to the

extended Kalman filter (EKF) or the linearized KF (depend-

ing on the selection of the linearization point) [5], [9],

approximation based on the second-order TE results in the

second-order filter (SOF). In the literature, several versions

of the SOF have been proposed [9], [10], [12] and, also, utili-

zation of a higher order TE in the LF design has been

discussed [13].

The derivative-free LFs appeared at the beginning of the

century. They are based either on a polynomial expansion of

the nonlinear functions or on the approximation of the state

estimate by a weighted set of deterministically or stochasti-

cally selected points. The former approximation in the LF

design is represented by Stirling’s interpolation (SI) of the

first or second order, which results in the divided difference

filters of the first or second order (DD1, DD2), respec-

tively [14], [15]. The SI can be understood as the TE, where

derivatives are substituted with differences [8]. The latter

approximation takes advantage of a different idea, where

the nonlinear function is preserved, but the conditional

(Gaussian-assumed) PDF is approximated by a set of

points. This approximation is represented by the unscented

transformation5 (UT) [2], [9], [16], deterministic quadra-

ture and cubature integration rules [7], [11], [17]–[19], and

stochastic integration rules [20], which results in the set of

the LFs including the unscented Kalman filter (UKF), cuba-

ture Kalman filter, the stochastic integration filter, or the

ensemble Kalman filter. Note that last mentioned filter,

propagating the set of randomly drawn samples instead of

the moments, is a suitable algorithm for a high-dimensional

state-space model [20], [98]. It is worth noting that

although the point-based approximations use a different

basic idea, they can be interpreted as examples of the statis-

tical linear regression of the nonlinear functions [8], [21].

Examples of approximation of a scalar nonlinear

function fkðxkÞ by the derivative-based first-order TE and

the derivative-free first-order Stirling’s interpolation are

shown in Figure 2. It can be seen that the TE-based linear-

ization f̂kðxk; x̂kÞ is more accurate in a close vicinity of

the linearization point x̂k, whereas the SI-based is better

in the wider vicinity. The reason can be found in the fact

that the derivative-free approximation is computed over

an interval defined by the set of (transformed) points.

Independent of which nonlinear function approxima-

tion is used, all the LFs provide estimates in the form of

the first two moments of an approximate Gaussian condi-

tional PDF, i.e., in the form of the conditional mean and

covariance matrix. The moments do not represent a full

description of the immeasurable state and are valid if and

only if the filter is working in the close vicinity of the true

state (thus, the name local), which is, however, not known

in practice. Therefore, significant attention has been

devoted to the theoretical analysis and monitoring of the

conditions under which a LF provides accurate6 and

4The term “optimal” is, in this article, related to the exact solution to
the BRR.

5The UT should be understood as a class of approximations rather
than one single approach. In the literature, various versions of the
UT have been proposed with different strategies to point
selection [16].

6The LFs can be divided into first-order filters (e.g., the EKF, DD1)
and SOFs (e.g., the SOF, DD2, UKF). The latter are expected to
provide more accurate estimates, but it is not a rule (due to
unknown impact of neglected terms in the nonlinear function
approximation).
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consistent results [22]–[26]. Roughly speaking, the LFs

are expected to provide nearly optimal estimation perfor-

mance for a mildly nonlinear model with an accurate ini-

tial condition.

GLOBAL METHODS

As opposed to local methods, global methods provide

accurate and consistent estimates in the form of condi-

tional PDFs without any assumption of the conditional

distribution family. Global methods are capable of esti-

mating the state of a strongly nonlinear or non-Gaussian

system, but usually at the cost of higher computational

demands. Among these methods, the GSF [27], [28], the

particle filter (PF) [2], [29], and the point-mass filter

(PMF) [30], [31] have attracted considerable attention.

The GSF is based on the approximation of all condi-

tional PDFs by weighted mixtures of Gaussian7 densi-

ties [5], [32], [33] and an analytical solution to the BRRs.

Then, the GSF can be imagined as a bank of simulta-

neously running LFs (e.g., EKFs or UKFs), which are

weighted with respect to the available sequence of the

measurements. As a consequence, the GSF is a nonlinear

state estimator with respect to the measurement.

The PF and the PMF solve the integral BRRs (3), (4)

numerically. The PF, developed in the nineties, is a repre-

sentative of a statistical approach to solution of the BRRs.

The main idea of the PF is to compute the conditional

PDF in the form of an empirical density, which consists of

a finite set of random samples (or particles) and corre-

sponding weights [29], [34], [35]. The central part of the

statistical approach is the importance sampling technique,

which uses an important function for drawing samples. The

samples are then associated with the computed weights so

that the samples and weights together correspond to the

conditional PDF. On the other hand, the PMF, which was

developed in the seventies, takes advantage of determin-

istic numerical integration rules. The fundamental step is

an approximation of the continuous state-space by a grid of

isolated points. Then, the conditional PDF is numerically

computed at these grid points only [36], [37]. As a conse-

quence, each point is associated with a computed condi-

tional PDF value and a mass, where the value is assumed to

be constant (thus, the name point-mass). Note that both the

PF and PMF have been continually developed to increase

the estimation quality and/or reduce computational com-

plexity. Important among recent advancements are the par-

ticle flow, homotopy, and tensor-based methods [90]–[92],

[99], [100].

Three typical approximations p̂ðxkjzkÞ of a scalar state
variable conditional PDF pðxkjzkÞ, i.e., the mixture of

Gaussians (for the GSF), the empirical PDF given by the

samples (for the PF), and the PDF evaluated at a determin-

istically chosen grid of points (for the PMF), used in the

GF design are visualized in Figure 3.

STATE ESTIMATION METHODS: ADDITIONAL TOPICS

The state estimation overview, given in the previous

section, provides a high-level description of the main

research directions in the area. The research is, however,

much wider and some of the topics, often stemming from

application needs, are briefly mentioned below.

BAYESIAN VERSUS OPTIMIZATION-BASED ESTIMATOR

DESIGN

Besides the Bayesian approach to estimator design, there

is also the optimization-based approach. Derivation of the

optimization-based estimator starts with definition of the

criterion to be minimized (e.g., minimal state estimate

error) and possibly also with definition of the estimator

structure (e.g., linear w.r.t. measurement). The resulting

algorithm then provides estimates in the form of the condi-

tional moments rather than the conditional PDF. The opti-

mization-based estimators are represented, e.g., by the

linear minimum mean square error (LMMSE) estimator8

or the H1 filter [9], [23]. Although the Bayesian and opti-

mization-based designs are principally different, they can

Figure 2.
Illustration of derivative-based and derivative-free linearizations

used in the LF design.

7A PDF can be approximated with a sum (or a mixture) of Gaussian
PDFs with an arbitrary accuracy. 8The KF was originally developed as the LMMSE estimator [38].
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result in estimators which have the same algorithms but

different assumptions.

FILTERING, SMOOTHING, AND PREDICTION

State estimation can be divided into the three subtasks; fil-

tering, where the conditional PDF pðxkjzkÞ is sought, pre-
diction, where pðxkþ‘jzkÞ is sought, and smoothing, where

pðxk�‘jzkÞ is sought for ‘ � 1. The previous section

focused (explicitly) on the filtering and (implicitly) on the

one-step prediction (because of the structure of the BRRs).

However, all the filters mentioned have their multistep pre-

diction and smoothing counterparts [2], [5], [8], [29], [37].

CONTINUOUS VERSUS DISCRETE-TIME MODELS

In certain applications, navigation and tracking included,

the available state-space model is continuous-in-time. In

this case, the continuous model can be discretized and

used for the abovementioned discrete estimator design or

the purposely designed continuous-in-time estimators can

be used. The filters mentioned have their counterparts for

the continuous-in-time models [12], [23], [39], [40], [90],

[92]. Moreover, for certain classes of continuous time

nonlinear models, it is possible to find an exact state esti-

mator. Examples from within this class of the exact esti-

mators are the Bene�s or Daum filters [95]–[97].

GAUSSIAN VERSUS OTHER DENSITY SPECIFIC

ESTIMATORS

The LFs are designed under the assumption of a Gaussian

PDF for all random variables. The popularity of the

Gaussian PDF arises from several reasons: 1) a Gaussian

distribution appears quite often in nature, hence the statis-

ticians use the term normal distribution; 2) a Gaussian

PDF is fully characterized by the first two moments (thus,

solution to the functional BRRs reduces to the recursive

computation of the moments); 3) a Gaussian variable has

the largest entropy among all random variables of equal

variance (i.e., the Gaussian assumption is the most conser-

vative assumption in terms of entropy) [41]; 4) according

to the central limit theorem, the sum of independent ran-

dom variables approaches, under certain conditions, a

Gaussian density [42]; and 5) algorithms for the Gaussian

PDF can be relatively easily extended for a powerful

Gaussian sum PDF. Despite all that, the Gaussian assump-

tion may not be suitable for all applications and various

(non-Gaussian) density specific estimators have been pro-

posed. As an example, the following distributions have

been considered in an estimator design.

� Student’s t-distribution, which is a heavy tailed dis-

tribution suitable for modeling of uncertainties with

frequent occurrence of outliers, was used in a design

of the Student’s t-filters [43]–[45].

� Rayleigh distribution, which is suitable for the for-

mulation of the bearings-only tracking, was used in

a design of the shifted Rayleigh filter [46].

� Circular, e.g., wrapped normal or von Mises, distri-

butions, which are convenient for the description of

angular quantities with bounded support, was used

in a design of the circular filters [47], [48].

� The Gaussian scale mixture family of distributions,

which is a family of distributions encompassing

many of the above. Considering a Gaussian distribu-

tion whose means and variances are themselves ran-

dom variables, one can account for a wide family of

distributions depending on the distribution of those

means and variances. This was exploited in [57]–[59]

to design Gaussian filters that are able to deal with

non-Gaussian distributions.

CONSTRAINED ESTIMATION

The state estimation problem formulation typically assumes

that the state is a real valued variable. However, it may

Figure 3.
Illustration of approximations used in the GF design; PDF approx. by Gaussian mixture (left plot), PDF approximation by empirical density

(middle plot), PDF evaluated at grid points (right plot).
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happen that the state domain is subject to certain constraints,

e.g., estimated pressure cannot be negative, estimated vehi-

cle position needs to be alignedwith a road. Such constraints

(belonging to a priori knowledge) cannot be incorporated in

the state-space model to be straightforwardly used by the

introduced state estimators. Therefore, various purposely

designed approaches for constrained state estimation have

been proposed [9], [49].

MULTIPLE MODEL STATE ESTIMATION AND

PARAMETER ESTIMATION

The nonlinear functions fkð�Þ and hkð�Þ of the model (1), (2)

need not necessarily be smooth, but they can be viewed as a

set of possibly simpler functions. As an example, consider

(radar-based) tracking of aircraft, a highly manoeuvrable

object. Aircraft dynamics can be described by a set of mod-

els, where each is suitable for the description of a different

phase of flight (e.g., an almost constant velocity or acceler-

ation model, a constant turn-rate model). During tracking,

however, a suitable model can hardly be determined a pri-

ori as it is difficult to predict aircraft future manoeuvrers.

Therefore, the concept of the (interacting) multiple model

(MM) has been developed [23]. The MM approach is based

on the determination of a set of possible models of a system

under different “working conditions.” For each model,

then, a filter (typically an LF) is constructed and its likeli-

hood w.r.t. available measurements is computed. The out-

put of the MM filter can thus be either a weighted sum of

all particular local estimates or the estimate with the high-

est likelihood. Note that the MM filter is algorithmically

similar to the GSF. The MM approach has been signifi-

cantly developed over recent years and MM-based state

estimation approaches capable of tackling data association,

clutter measurements, and estimating set variables have

been proposed. Examples of these are the multiple hypoth-

esis tracking filter and probability hypothesis density fil-

ter [101]–[104].

The MM approach is also suitable for tasks, where the

state-space model contains parameter(s) that are unknown

but can acquire a value from an a priori known set. Then, a

set of filters is designed for each potential parameter value

and is used in the MM filter [50]. Note that alternative

approaches for concurrent estimation of the state and param-

eters are the joint and dual estimation approaches [51]. The

former approach is based on extension of the state vector

with the unknown parameters (resulting in the extended

state-space model) and their simultaneous estimation by,

typically, a nonlinear filter. The latter approach is based

on a definition of two filters, which are regularly

switched. The first one estimates the unknown states

under the assumption of given parameters and the second

one estimates the unknown parameters under the

assumption of a given state.

SOFTWARE TOOLS

An extensive number of state estimation algorithms have

been proposed so far. It is, therefore, a challenging task to

choose a suitable estimator for a given task or application.

Fortunately, many of the estimators have been implemented

and can be used for assessment (or prediction) of a filters’

performance. Most of the methods and toolboxes are

designed for theMATLAB environment. The estimators are

available in MATLAB proprietary toolboxes or in publicly

available toolboxes. The latter includes, e.g., the Nonlinear

Estimation Framework toolbox available at http://nft.kky.

zcu.cz/nef, the EKF/UKF Toolbox available at https://

github.com/EEA-sensors/ekfukf, or the DynaEst Toolbox

available at http://www.codeforge.com/article/41828. A

wide portfolio of routines for tracking is available in the

Tracking Component Library available at https://github.

com/USNavalResearchLaboratory/TrackerComponentLi-

brary [93]. Besides the toolboxes for the MATLAB, there

are also early toolboxes in Python, a modern widely used

programming language. An example is the International

Society of Information Fusion (ISIF) StoneSoup initiative,

which can be found at https://stonesoup.readthedocs.io/en/

latest/index.html. Note that some books also come accompa-

nied with sample implementations, e.g., [2], [4], [23].

LITERATURE ON STATE ESTIMATION AND NAVIGATION

Because of the scope of this article, it was not possible to

mention, discuss, and address all topics, details, and recent

advancements in state estimation methods. Nevertheless, in

the literature, there is an extensive number of comprehen-

sive books and survey papers on state estimation and naviga-

tion system design, which offer an in-depth description of

these areas. To name a few, the following references focused

on estimation theory [1], [2], [5], [9], [12], [16], [29], [34],

[52] and navigation system design [3], [4], [23], [60], [105].

ESTIMATION IN NAVIGATION SYSTEMS

The origin of state estimation methods is closely associ-

ated with the development of navigation and tracking sys-

tems. Indeed, any modern navigation system uses a state

estimation algorithm for optimal processing of data from a

variety of sensors. In this section, recent developments

and examples of application of state estimation methods

are provided with the stress on the area of expertise of the

AESS NSP members. Besides recent navigation applica-

tions, this section also discusses their expected level of

nonlinearity/non-Gaussianity and error sources of the sen-

sors and maps typically used in the navigation system.

Knowledge of the considered task nonlinearity/non-Gaus-

sianity and correct treatment of the sensor (or map) error

sources is essential for the selection of the appropriate

Duník et al.
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state estimator and achievement of a high and consistent

navigation performance.

EXTENDED KALMAN FILTER IN ATTITUDE AND

HEADING REFERENCE SYSTEM

An attitude and heading reference system (AHRS) is an iner-

tial-measurement-based navigation system providing an

estimate of the vehicle attitude (i.e., deviation of the vehicle

orientation from its tangential plane) and heading (i.e., dif-

ference between vehicle heading and geographic north) [53].

Considering pure inertial AHRS and lower cost microelec-

tromechanical system (MEMS) inertial sensors without a

capability of gyro-compassing, the vehicle attitude and

heading are computed from two pairs of noncollinear vec-

tors. Typically, the vectors of gravity field and magnetic

field are considered. Then, the first pair consists of two vec-

tors of gravity field, where one vector is the gravity vector in

the body frame measured by the accelerometer and the other

is the expected gravity field vector in the navigation frame

computed on the basis of a model (e.g., the Earth Gravita-

tional Model EGM96). The second pair consists of the mag-

netic field vectors, where the magnetometer’s measured

vector is in the body frame and the other is the expected

magnetic field vector in the navigation frame computed on

the basis of a model (e.g., the International Geomagnetic

Reference Field model IGRF-13).

In [53], the EKF-based pure inertial AHRS was

designed. The AHRS was developed with the stress on the

adaptive elimination of nongravitational vehicle accelera-

tion, which can be considered as the main error source.

The proposed AHRS thus provides accurate and consis-

tent estimates even in highly dynamic trajectories. Note

that the AHRS performance was illustrated using synthetic

and real data following the RTCA DO-334 Minimum

Operational Performance Standard requirements. The

AHRS is further discussed and its performance is illus-

trated in [54].

In Figure 4, an AHRS system is qualitatively compared

in terms of the degree of nonlinearity and non-Gaussianity

of the corresponding technical challenges. Particularly, the

abscissa axis of the diagram represents the linearity/nonlin-

earity of the problem, and the ordinate axis shows the

degree of non-Gaussianity. For the AHRS, the majority of

the complications involve nonlinearities due to unavailable

magnetometer measurements or growing heading informa-

tion uncertainty.

PMF IN TERRAIN-AIDED NAVIGATION (TAN) SYSTEM

A TAN system is primarily designed for environments,

where the coverage of radio navigation systems (e.g., GNSS

or distance measuring equipment) is not expected to be

sufficient or the transmission of the radio navigation systems

can be interfered with (e.g., by jamming or spoofing) [55].

Unlike radio navigation systems, the TAN systems deter-

mine the position of a land, air, or water vehicle on the basis

of on-board sensor measurements and a map of the terrain

covering the vicinity of the vehicle. As a consequence, TAN

systems do not rely on any information broadcast to the

vehicle from distant systems and thus they are much more

resistant to intentional or unwitting interference.

TAN systems are, in principle, highly nonlinear. As

such, global (and computationally demanding) estimation

algorithms are used for measurement and map processing.

In [55] and [56], a novel computationally efficient version

of the PMF, namely, the Rao–Blackwellised PMF

(RBPMF), was proposed, which provides highly accurate

and consistent estimates for a class of conditionally linear

models, typically, appearing in the area of navigation. The

developed RBPMF was used in a TAN system and evalu-

ated using a set of synthetic and real data.

As can be seen in Figure 4, a TAN system is a highly

nonlinear estimation task, mainly due to the utilization of

the terrain map (terrain, as modeled in the state-space

model, can be viewed as a complex nonlinear function).

The degree of the non-Gaussianity depends on the data

source used for the map design (e.g., from satellite, air-

craft, or LiDAR based mapping).

GLOBAL NAVIGATION SATELLITE SYSTEMS

When available, satellite-based navigation is arguably the

solution for positioning, navigation, and timing (PNT) [62],

[63], [73]. The overarching technological name is GNSSs,

which encompasses GPS, GALILEO, GLONASS, Beidou,

and other regional and augmentation systems [60], [89]. All

these systems share the same principle: a constellation of

satellites transmit spread-spectrum signals that the receiver

uses to estimate its (pseudo-)distances to those satellites,

which are then used in solving a geometrical problem to

Figure 4.
Categorization of typical problems in AHRS and TAN systems.
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compute position and timing with an accuracy that ranges

from a couple of meters to centimeters depending on the

type of signals, frequencies, and method (code/carrier) used

in such processing. Remarkably, a GNSS receiver leverages

state estimation in several of its building blocks, which are

briefly discussed hereafter.

Whereas acquisition of GNSS signals is typically con-

sidered as a detection (or classification) problem, the fine

estimation of the time-varying delay/Doppler parameters

of the signals is performed by the so-called tracking loops.

Those delay and phase lock loops (DLL and PLL, respec-

tively), as well as its different variants, can be considered

instances of a larger state estimation framework where the

gain is fixed (selected through the choice of a loop band-

width). For instance, Vil�a-Valls[64] provided a tutorial

review of KF-based carrier tracking techniques for GNSS

receivers, highlighting their relationship with legacy PLL

schemes. The use of state estimation to substitute standard

tracking loops was seen to be a promising tool in many

challenging scenarios such as in mitigating the effects of

ionospheric scintillation [65], [66], mitigating multipath

propagation [67], enabling resilient noncoherent tracking

of data-only channels [68], attenuating the effects of inter-

ference [70], coping with high, time-varying dynam-

ics [71], or in designing robust real-time kinematic (RTK)

solutions in harsh propagation conditions [72], to name a

few examples.

In the context of position, velocity, and time (PVT)

estimation, whereas estimation of xk (i.e., containing the

PVT variables) can be carried out on an epoch-per-epoch

basis if signals from four or more GNSS satellites are

observed, the use of state estimation techniques (mostly

KFs) typically improves the overall performance due to

two facts [87]. First, the use of fkð�Þ from (1) to model the

receiver antenna motion constrains the degrees of freedom

of the unknown variable. In the case where an IMU is avail-

able, the filter state xk becomes the error of the inertial

strapdown computation and fkð�Þ becomes a system model

for those error states, thereby even further limiting the

degrees of freedom that need to be solved by the GNSS

observations (mainly IMU alignment and biases) [4]. Sec-

ond, the state vector can be tailored to include GNSS-spe-

cific artefacts, like carrier phase ambiguities. The state

estimation technique is additionally used to fuse informa-

tion from both code-phase (a.k.a. pseudorange) and carrier-

phase observables in a variety of ways. The resulting car-

rier-phase positioning techniques like carrier/Doppler-

smoothing, RTK or precise-point-positioning are then typi-

cally implemented by means of (more or less sophisticated)

versions of KF-like algorithms [85], [86].

GNSS, like many radio-navigation systems, provides

measurements through a correlation process [88] and

hkð�Þ in (2) ideally captures all aspects of this. In open-sky
conditions, DLL or PLL discriminators (plus the loop fil-

ters) provide good approximations via linearization of the

correlation functions and a linear hkð�Þ well approximates

the real circumstances. However, in adverse signal condi-

tions such as multipath, urban, or indoor scenarios, the

conventionally used discriminators do not provide accu-

rate approximations, and as a consequence the resulting

state estimates including the covariance are far from

reflecting the real distribution of the user’s position. To

circumvent these issues, Bayesian direct position estima-

tion (BDPE) uses the correlation values at several time-

delay/Doppler-shifts directly as measurements and hkð�Þ
is given by the signal’s correlation function and thus

becomes nonlinear [79]. To solve the resulting nonlinear

state estimation both Gaussian derivative-free filtering [80]

and PF [83] methods were considered in the literature. The

latter showed, in real-world adverse signal conditions, that

non-Gaussian (even multimodal) PDFs for the user posi-

tion may occur, thus the PF implementation provides

more realistic PDF estimates at the expenses of an

increased computational cost. BDPE (and DPE) was also

shown to provide higher sensitivity and resilience [81]

since it increases the effective signal-to-noise ratio by

combining the signals from different satellites as opposed

to legacy receivers [82]. However, BDPE is orders of

magnitude more computationally demanding than DLL/

PLL tracking plus KF-based PVT solvers. It is also more

difficult to tune and requires handling of satellite ephem-

eris or atmospheric errors as nuisance parameters [84].

Furthermore, modeling hkð�Þ via the correlation function

is still an approximation and a more complete formulation

requires stochastic modeling of propagation channel

parameters or inclusion of multipath reflection parameters

in the state vector xk.

A qualitative diagram of challenging GNSS areas can be

observed in Figure 5, similarly to that in Figure 4 for AHRS

and TAN systems. In this case, we highlight that jamming

interference may cause saturation of the analog-to-digital

(ADC) converters, bringing non-Gaussianity to themeasure-

ments. Implementing tracking using a discriminator-based

Figure 5.
Categorization of typical signal processing problems in GNSS

receiver design.
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approach allows for linear modeling of the resulting obser-

vations, but might yield to compromising the Gaussian

assumption. If a discriminator is not considered, the filtering

method needs to account for nonlinearities in themodel. Ion-

ospheric scintillation is typically modeled through Gaussian

linear/nonlinear dynamics. Multipath modeling is either

nonlinear Gaussian if done at the sampled signal level, or

nonlinear/non-Gaussian if done at the observable level due

to the biases it produces on range estimates. As mentioned

earlier, DPE presents a challenging nonlinear problem that,

in turn, can be Gaussian or non-Gaussian depending on the

multipath conditions and other interfering sources. Fusion

of GNSS data and other sensors gives rise to a multitude of

architectures that, basically, can populate the four main

quadrants in Figure 5.

SPACE VEHICLE NAVIGATION

Accurate navigation of space vehicles is crucial for the

success of space missions. Precise position and velocity

information is essential for the insertion of a spacecraft

into an orbit, in-orbit station keeping, guidance, and

manoeuvring of satellites. The navigation system plays

an even more vital role in planetary reentry missions.

Precise orbit determination (POD), i.e., position estima-

tion with highest possible accuracy is essential for

synthetic aperture radar, altimetry, GNSS radio occulta-

tion, and gravimetry missions. Various state estimation

techniques are used to estimate position and velocity of

a space vehicle from various types of observations,

for example, dead-reckoning, range, range rate, point-

ing angle, angular measurements to known celestial

objects.

This task is nonlinear, so the EKF is a widely used

estimation algorithm for the space vehicle navigation. An

example of EKF-based low Earth orbit (LEO) satellite

navigation using GNSS code and carrier-phase observa-

tions can be found in [74]. Navigation of a spacecraft in

the lunar transfer trajectory using ground-based range,

range-rate, and angular observations can also be per-

formed using a sequential state estimator like the

EKF [75]. It should be noted that the EKF provides a sub-

optimal estimation solution due to the linearization in the

mean and covariance matrix propagation equations. For

this reason, the position solution of the EKF can be

degraded for reentry and launch vehicle navigation prob-

lems, where the dynamics of the space vehicles are highly

nonlinear [16], [76]. The UKF can be used in these state

estimation problems to obtain better navigation perfor-

mance. However, the UKF is more computationally

expensive due to multiple sample state vector propaga-

tions at each measurement interval and hence it is often

difficult to implement for real-time applications. The

single propagation unscented Kalman filter and the

extrapolated single propagation unscented Kalman filter

have been developed [76] to address this issue. These esti-

mators can reduce the computation time of the UKF by up

to 90%[77]. In other words, the accuracy of the UKF can

be delivered with the computational complexity of the

EKF. Using a similar approach, a computationally effi-

cient PF has been proposed as well which can be used for

real-time navigation [78]. The accuracy of the PF can be

delivered using this algorithm with around 90% reduction

in computation time.

It should be noted that in the state estimation problem

for space vehicle navigation, the dynamics of the space

vehicle can be mildly nonlinear to highly nonlinear,

depending on the type of vehicle [105]. The process noise

and measurement noise are considered zero-mean Gauss-

ian in most cases [106]–[110]. However, the process noise

for the space vehicle motion model arises from the unac-

counted perturbation forces, which is non-Gaussian in

nature [111]. Considering the process noise as Gaussian is

an approximation and results in a relatively less accurate

navigation solution. For high precision applications like

POD, all the perturbation forces need to be modeled care-

fully and then the process noise can be considered as

Gaussian [112]. The qualitative diagram is shown in

Figure 6 in this case.

TREATMENT OF ERROR SOURCES

Navigation systems use a wide range of sensors, which

provide measurements zk or data uk used for the state

measurement update [filtering step (3)] or the state time

update [prediction step (4)], respectively. Realistic model-

ing of sensors for the navigation filter algorithm design is,

therefore, essential to achieve high navigational perfor-

mance. However, at the same time, it is a complex task

requiring a deep knowledge of underlying physical princi-

ples and mathematical background that can often be ful-

filled only approximately. To at least partially capture this

Figure 6.
Categorization of typical problems in Space Vehicle Navigation

systems.
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Table 1.

Character of Various Navigation Sensor (Including the Map) Error Sources

Linearity of

deterministic

part of error

model

PDF of stochastic

part of error model

Temporal/spatial

correlation of error

GNSS

satellite

nominal satellite orbit errors linearity given

due to large

distance

satellite-user

approximately

Gaussian

highly correlated in time

satellite orbit anomalies

(determination/upload gross

errors, unflagged maneuvers,

eclipsing, ...)

– – rarely occurring gross errors

nominal satellite clock errors linear approximately

Gaussian

highly correlated in time

satellite clock anomalies

(clock drifts, jumps,..)

– – rarely occurring gross errors

satellite payload failures

resulting in signal waveforms

anomalies

nonlinear – nearly constant in time

satellite hardware delays linear - highly correlated in time

(dependent on payload

temperature)

GNSS

signal

propagation

tropospheric modelling

errors

linear approximately

Gaussian

correlated in time and space

(weather dependent)

ionospheric modelling errors

(single frequency user)

linear approximately

Gaussian

correlated in time and space

(space weather dependent)

residual ionospheric errors

after compensation for dual

(or more) frequency user

– non-Gaussian correlated in time (space

weather dependent,

scintillations)

multipath impact at user side nonlinear non-Gaussian correlated, depending of

geometry change

jamming at user side – zero-mean Gaussian

for low power, non-

Gaussian for high-

power

white

spoofing at user side – – gross ranging errors

GNSS

receiver

thermal noise at user receiver

(antenna, frontend)

– zero-mean Gaussian white

nominal tracking loop noise

(thermal, transient, oscillator

jitter)

– approximately

Gaussian

correlated pending user

dynamics, oscillator type and

tracking settings

erratic tracking loop response

in harsh signal conditions

including cycle-slips

unknown non-Gaussian approximately white

receiver hardware delays linear – correlated in time (dependent on

frontend/antenna temperature)

unmodelled antenna phase

center variations at user side

linear – highly correlated in time

depending on direction of arrival

to user antenna

Inertial

sensors

bias (turn-on, run-to-run,

constant)

linear Gaussian time-correlated (time constant

depends on the IMU grade,

magnitude depends on the

quality of IMU laboratory

calibration)
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complexity Table 1 is provided, which gives an overview

for error sources of the sensors typically considered in the

four mentioned navigation systems.

In the case of GNSS, the impact of the error source on

range measurements (code or carrier observables) is dis-

cussed and it should be noted that the impact might have a

different characterization on raw signals or correlation

values. The GNSS satellite is considered in this context as

a sensor whose various error modes result in biased range

measurements. Gross errors can be handled via multiple

hypothesis filters. Errors with a deterministic impact on

the range are denoted with the symbol “–” in the “PDF”

column. Most noteworthy is the correct handling of tem-

poral or spatial correlations. Modeling of atmospheric

errors as range biases within the navigation filter is often

essential for utmost accuracy, but requires a simplified

treatment of atmospheric physics. Errors related to multi-

ple propagation paths and from the signal processing

within the GNSS receivers can be considered linear and

Gaussian for nominal open-sky conditions but become

highly nonlinear and non-Gaussian in adverse signal

conditions.

The INS processes the inertial measurement data (and

also measurements of other nonradiating sensors such as

the magnetometer or the barometric altimeter) nonli-

nearly, because the dynamic model of the time evolution

of the navigation parameters is nonlinear.9 However, cer-

tain errors (such as biases) are modeled linearly (e.g., by a

Gauss–Markov process) and then just subtracted from the

measurements. The models are typically linear although

the error’s physical cause can be a nonlinear function of

the surrounding environmental effects. On the other hand,

for example, misalignment and scaling of a tri-axis sensor

can be dealt with by simply multiplying the true quantity

by typically a 3� 3 matrix, which is a linear operation

from the physical perspective. Another issue is that certain

parameters of the sensors are calibrated offline potentially

by a nonlinear optimization and then these parameters are

used in the design of a linear error model [113]–[115].

Because of the multiple possible views on the sensor error

properties and their respective models, the table below

Table 1.

(Continued )

Linearity of

deterministic

part of error

model

PDF of stochastic

part of error model

Temporal/spatial

correlation of error

misalignment error (scale-

factor, cross-coupling)

linear – constant (magnitude depends on

the quality of IMU factory

calibration)

random noise (residual

electrical noise, quantization,

vibration)

– Gaussian white

scale factor nonlinearity nonlinear – constant

Magnetometer additive magnetic field

produced by e.g., by

permanent magnet, electrical

equipment (hard-iron bias)

linear Gaussian/non-

Gaussian based on

operation conditions

time-correlated

distortion of magnetic field

by e.g., surrounding iron

(soft-iron bias)

nonlinear Gaussian/non-

Gaussian

time-correlated

misalignment error

(analogous to inertial

sensors)

linear – constant

random noise linear Gaussian white

Altimeter weather variation linear Gaussian time-correlated

Map (as an

aiding source or

its part)

terrain (e.g., SRTM),

magnetic field (e.g., IGRF-13,

WMM), gravity field (e.g.,

EGM96), ionosphere (e.g.,

Klobuchar, NeQuick)

linear Gaussian/non-

Gaussian

typically spatially correlated,

properties depends on the map/

model design technology and

source data

9The nonlinear model can be, for the purpose of the state estimation,
linearized.
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gives an overview of the dominant errors affecting the

sensor readings with the emphasis on the properties of the

error models used in the navigation filter. It should be also

noted that the error properties are closely tied with the sen-

sor grade and in the table higher sensor grades, as used in

navigation systems, are considered.

An insubstitutable component of any navigation

system is an explicit or implicit model (or map) of an

environmental feature. Of the former type, the terrain

map10 used as an aiding source of the TAN system is

worth mentioning here. The latter type includes for

example models of the gravity field11 (e.g., the

EGM96 [4]), magnetic field (e.g., the IGRF-13, the

world magnetic model (WMM) [4]), or of the iono-

sphere (e.g., Klobuchar, NeQuick [4]). Quality of such

maps and models determines, to a certain extent, the

overall performance of the navigation system and thus

their errors should be also carefully treated. The map

error is, therefore, included in the table for the sake of

completeness.

Finally, it is worth noting that the correct modeling of

the navigated vehicle dynamics within the state equation

and the function fkð�Þ is at least equally important as the

sensor modeling. However, due to the near endless variety

of vehicle motion patterns, it becomes nearly impossible

to present a concise overview in this table. Details and dis-

cussion on the models used in the navigation or tracking

can be found, for instance, in [3], [4], and [23] and refer-

ences therein.

CONCLUDING REMARKS

This article dealt with state estimation of the nonlinear

stochastic dynamic discrete-in-time systems. In particu-

lar, stress was laid on a high-level overview of the

state-of-the-art Bayesian state estimation methods and

description of their applications in the area of naviga-

tion and tracking system design. The field is steadily

growing with more efficient, generic, and robust filter-

ing methodologies, research mostly ignited by the

plethora of applications leveraging state estimation

developments.
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